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Abstract

Interaction diagrams are extensively used as a practical tool for designing prismatic members subjected to several
combined stresses. For a long time, sets of these graphs have been available in building technologies such as reinforced
concrete, steel and composite sections, under different combinations of loadings.

This paper will present the general formulation for obtaining the diagrams corresponding to biaxial bending with
axial force on hollow steel sections; with circular, rectangular and square shape, with or without rounded edges. In
particular, a detailed general analysis of the elastic interaction surface is made for these stresses over the above-cited
sections. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The indisputable convenience of using interaction diagrams with several combined loadings (generally
up to 3), on a prismatic member section, is the cause for the spread of these graphs. It should be mentioned
that, among them, those corresponding to reinforced concrete sections are elaborated by Jiménez Montoya
et al. (1991), as being universal. It could also be cited that those are available for metallic or mixed profiles
in several publications, among which stand out the works by Atsuta and Chen (1976), Zhou and Chen
(1985) and Bradford (1991).

This paper presents the general approach that allows the analytical formulation of biaxial bending—axial
force interaction diagrams in the usual hollow metallic sections, for the situation in which the most stressed
point yields. We study the general case of rectangular sections with rounded edges, which allows one to
extend conclusions to cases of sharp edges, at one end, and to that of a circular section, at the other, as they
are both particular conditions of the general case.
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2. General approach to the problem

For a hollow rectangular metallic section with rounded edges (Fig. 1), subjected to tension or com-
pression force and biaxial bending, the most stressed point is one in the outer contour on one of the corners.
All the points on one side of the outer contour share the maximum value when bending is uniaxial.

Given the double symmetry of these sections, it suffices to study the quadrant showing greater stresses,
which will be the one furthest away from the neutral fiber. Therefore, with the notation of that figure, we
have

The general expression for the tensions:

N M, M,
oxy)=—Z+—y+—-

AT LT (1)
that will be written as follows:
o(x,y) = v+ umy + px. (2)
The equation for neutral fiber is
0=V+ 1Ly + px; prz—z—ix—ﬂ%- (3)

Following the usual criterion in metallic structures of taking, as the maximum demand, the combination
of loading that reaches the yield stress o. at the most stressed point, the limit condition will be

0e =V + HyYmax + ,uyxmax- (4)

Since stresses (1) are linear, the maximum stress point (Xmax, Vmax) Will be the one furthest away from the
neutral fiber, inside that circular contour, i.e., that in which the tangent to the circle is parallel to the neutral
fiber.
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Fig. 1. Geometrics and stresses of a hollow section.
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Circumference
z=VR2— 1. (5)

Parallelism requires

Z, — d_Z — Q j tmax — b
dt dx / R2 — 12 U,

max

that is

Ru,
Imax = —F/—,
VI
and from Eq. (5)
Ry,
u

Zmax = T —/—
VT

In the main central axes

xmax :xO +—
Vg

Ru

X

ymax:y0+7-
\ R

Therefore, the limit condition (4) will be

Ry,
U

Ru Ru

s + | X0 + — |. (6)

Yo+ — S
\J 1 1

After rationalizing, squaring and placing everything in order, the results are as follows:

e =V+p,

Vit (0 — RO + (x5 — R + 2y0v i, + 2x0vi, + 2X0)ot pt, — 200V — 2030t — 20exop, + 07 =0,
(7)

equation for the limit surface, which turns out to be a quadric in the axes (v, i, u,) as well as in axes
N, M,, M,

3. Study of the limit surface

3.1. General case

Expression (7) represents a quadric surface with axes oblique to axes (v, s, t,). The study and classi-
fication of this surface could easily be made consulting any algebra textbook (Garcia and Léopez, 1984).
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Since the determinant

1 8y X0 —0O¢
2 2
no ¥R xon  —den
2 7R2 _ =0 Vo-evx07y07R'
X0 X0)0 )CO 0eX0
2
—0¢ —0e)o —0eXo (2N

Eq. (7) represents a cone for all cases.
Its center (Ve, Vic, ¥yc) is the solution of

1 b Xo Ve O, v. = 0. = N = Ao,
Yo ¥i—RE xon ||t | = |00 | = |[ie =0,
Xo Xy xg—RY|| i GeXo e =0

that is, in all cases, it is located at N axis, at N, = Aoc..
Its main axes are the eigenvectors corresponding to the eigenvalues for this coefficient matrix:

1- Yo X0
w o W -R - Xo)o =0=7"+72R*—1—p*) + AR* — R*p* —2R*) — R*,
Xo Xo)o xg—R*— 4

where p? = x3 +)7 (Fig. 1).
The solutions to this equation are

1+p2—R2+\/(R2—1—p2)2—|—4R2

A= D >O,
1+p2—R2—\/(R2—1—p2)2+4R2
A= <0,
2

;L3:_R2<O,

and the corresponding eigenvectors (not normalized) are

1+R2—p2+\/(R2—1—p2)2+4R2

Y;1 = B » Yo, Xo |

B 1+p2—R2—\/(R2—1—p2)2+4R2

Vo = y Yo, Xo |
2

V3 = (07 _x07y0)~

A group of axes (m,n,7n) parallel to these vectors in the center of the cone (4a.,0,0) will become the
main axes for the quadric. The one parallel to V| is the cone axis, since 4; > 0. Carrying out a change of axes

to the main ones (m being the cone axis), the equation for the quadric is reduced to

/llmz + )Ql’l2 + /13}7!2 = 0,

which allows us to identify it, in general (4, # ;) as a cone with an elliptical directrix and an m axis oblique

to the coordinate planes for the case of rectangular hollow sections with rounded vertices.
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3.2. Particular cases

3.2.1. Rectangular section without rounded corners
In this case, with R = 0 and (xpax, Vmax) = (X0,0), the results obtained are

)v1=1+p2, /122/13:0.

The cone semiangle values are n/2 and it degenerates into a double plane, with an immediate equation from
expression (1):

N MM,
e =—+— — X
I AR T

which goes through all three points N, = Ace, My, =0l /yo, My, = 0c.l,/x, (Fig. 2).

3.2.2. Square section without rounded corners
In this case, the tracing of the plane constituting the interaction surface with that for N =0 is parallel to
its second bisectrix.

3.2.3. Circular section
In this case, xo=yo=0=p and R is the section’s outer radius. The results are
=1 A= —R27 A3 = _R?

and the cone turns out to have a circular directrix. Its axis, oblique, in the general case, to coordinate
planes, now coincides with the axis for axial force (Fig. 3), since the first eigenvector is, now normalized:
¥1 = (1,0,0).

Fig. 2. Interaction surface for a sharp corner rectangular section.
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Fig. 3. Interaction surface for a circular section.

4. Representation of the limit surface: interaction diagrams
4.1. Circular section

Fig. 4 represents the portion of interaction surface contained in the first octant, which is the only one to
be considered taking into account how the problem has been set up. In the figure, the bidimensional reality
of the problem could be appreciated. The surface representation can be reduced to a straight line in the

NOM,; plane, M, = ,/M? +M}? being the resulting bending. The N-M, interaction diagram for the cor-

responding circular section is comprised of a single straight line in this case. Fig. 5 represents the interaction
diagram corresponding to a profile with diameter 100 mm and thickness 5 mm (o, = 254.8 x 10° Pa).

Contour lines N = constant of the surface are concentric circumferences with the origin, and constitute
the interaction diagram in a group of arbitrary axes which do not coincide with that of the resulting
bending.

Fig. 4. Reduction of surface to a single straight line.
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Fig. 5. Interaction diagram for a circular section.

4.2. Rectangular section with sharp corners

Fig. 6 represents the portion in the first octant of the plane where the general case degenerates. In this
case, the problem is tridimensional, and all flat sections are parallel straight lines for constant values for any
of the three variables. Representing, for instance, contour lines N = constant of the interaction surface, an
interaction diagram is obtained, like that in Fig. 7, which constitutes one of the possible N—M,—M, in-
teraction diagrams for this type of section.

When the section is square, and in the option mentioned of cutting with N = constant planes, the
straight lines in the interaction diagram are parallel to the second bisectrix for the M,—M,, plane, given the
double symmetry of the section.

Fig. 6. Generation of graphs for a sharp-edged rectangular sections.
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Fig. 7. Interaction diagram for a sharp-edged rectangular section.

Fig. 7 shows the diagram corresponding to a rectangular profile of 120 x 60 mm? and 6 mm of thickness
with sharp corners (o, =254.8x 10 Pa).

4.3. Rectangular section with rounded corners

Bearing in mind the shape of the interaction surface in the general case, the intersections with the planes
parallel to the coordinate ones are all conical curves, except those corresponding to the NOM, and NOM,,
planes. These are straight lines, since the ON axis goes through the center of the cone, now with an axis
oblique to those planes.

If, as before, the interaction surface is represented by means of its contour lines, v = & (which constitutes
one of the possible options, probably the most usual and convenient one), these result in the following
equation, from Eq. (7):

w05 —R) + #;(x(z) —R?) +2(k — o¢)yop, + 2(k — )Xo, + 2x0yo ., + (k — O’e)2 =0,

which always represents conical lines. To study its classification, the main axes are obtained next:

2 2
Vo — R -4 Xo)o a2 2 2 2p2 2
o xg_Rz_z‘O)“ + 2R — p?) + R(R* — pP).
Eigenvalues

;LI:pz_R2>0, ;LII:_R2<O.

Unitary eigenvectors

_._<yo Xo) - _< X0 yo)
VI = R B i = — Ty
p’p pp

carrying out the change to the (&, #) axes, given by ¥y, Vy, results, in a canonical way, in
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Fig. 8. The oblique cone in the general case.
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that is to say, non-equilateral hyperbolas with a center [p(a. — k)/(p> — R?),0] in the axes (&,1). The one
corresponding to N = 0 is shown in Fig. 8 on the M,—M, plane. The branch which is nearest to the origin,
corresponding to the cone leaf developed on its semiaxis not included in the first octant, cuts the axes OM;,
and OM,, at the points

L.oe Lo

M, = , M, = .
Yo +R T x+R

Fig. 9. Generation of diagrams in the general case.
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Fig. 10. Interaction diagram for a round-edged rectangular section.

The portion of this branch located between those points is the only one to be considered in the problem,
since the other branch, corresponding to another cone leaf, provides values outside the problem’s range.

The generation of the contour lines v=k is shown in Fig. 9. Fig. 10 shows the diagram thus generated for
the same 120 x 60 mm? profile, now with rounded corners, already on the N-M,—M, axes, ready to be used.

In the case of square profiles with rounded corners, all these considerations continue to be valid and,
furthermore, the main axis & of the hyperbola coincides with the bisectrix of the M,—M, first quadrant,
given the double symmetry of the section.

It is evident that the values of N, M., M, represented in the diagrams must already include the corre-
sponding ponderation coefficients, as well as that of buckling if N is a compression action.

5. Conclusion

This paper focuses on the generic shape of the biaxial bending-axial force interaction surface of hollow
metallic profiles.

The approach to the problem allows the study of circular and rectangular shapes, with or without
rounded corners, with a remarkable unity, as well as the specific formulation of the N-M,—M,, interaction
diagrams, for the different types of profiles.

It is shown that the interaction surface in those axes is always a cone.

In rectangular profiles with rounded corners, the cone has an elliptical directrix with its axis oblique to
the coordinate planes, and its N = constant contour lines result in non-equilateral hyperbolas.

In rectangular profiles with sharp corners, the cone degenerates into a double plane, and parallel straight
lines define the interaction diagrams.

Finally, in circular sections, the cone has a circular directrix, its axis being the axial force one, and the
diagrams traced by means of N = constant are concentric circumferences. The bidimensional reality of the
problem becomes evident as the resulting bending direction being indifferent. Therefore, the interaction
diagram can be reduced to a single straight line in the total axial force-bending plane.
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